
Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

1

Translated by:H.Ozawa

Seasar2.3

Yasuo Higa

Seasar Foundation/Chief Committer

http://www.seasar.org/en

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

2

Translated by:H.Ozawa

DO YOU REALLY WANT
TO WRITE
CONFIGURATION FILES?

I want to ask this question to

every developer in the world,

Seasar2 saves you from the XML hell

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

3

Translated by:H.Ozawa

Agenda

• Why DI was conceived

• Problem with the current DI

implementation (Spring)

• Path to the next generation DI(Seasar2)

• Seasar2 VS EJB3

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

4

Translated by:H.Ozawa

Before DI

• Unfulfilled dream of components

• The promise of a component

– enable developers to just combine “black box”

components to build an application

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

5

Translated by:H.Ozawa

Merit and Demerit of a Component

• Merit

– Components can be reused

– Compenents can be easily combined

• Demerit

– Components must be developed in conformance

to on “special” rules (implement set of APIs)

• Lock in from using “special” APIs

• Components conforming to different APIs may not

be able to work together

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

6

Translated by:H.Ozawa

Light and Darkness of Components

• Light

– ActiveX is seeing success in the GUI world

• Darkness

– Not too successful in application development

world

• Not many components can be used

• Cost of favouring one API implementation is too

high

• Need to connect differing systems together

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

7

Translated by:H.Ozawa

Example of a Failure

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

8

Translated by:H.Ozawa

Problems with EJB (SessionBean)

• Too many files are necessary to build just

one component

– 2 interfaces

– 1 implementation class

– Configuration files

• Gathering everything and deploying to an

application server is too much of a hassle

• Redeploying each time there is a

modification is very tiring

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

9

Translated by:H.Ozawa

Problems with EJB (SessionBean)

• Testing is difficult because a component

must run on an application server

• API is difficult and requires too much time

to learn

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

10

Translated by:H.Ozawa

Disastrous State of EJB

• Many developers tried using it because it

is a “standard”

But, most did not overcome the hardship

and abandoned it

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

11

Translated by:H.Ozawa

Why DI was Conceived

• As a replacement of EJB

• Resolves following EJB problems

– No need to implement proprietary APIs

– No need to deploy

– Able to run without an application server

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

12

Translated by:H.Ozawa

Concept of DI

• POJO(Plain Old Java Object)

– Not dependent of APIs

• Improved reusability

• No need to learn APIs

• Able to run without an application server

• Testing is easier

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

13

Translated by:H.Ozawa

Concept of DI

• DIContainer resolves dependencies

between objects

– Each object defines interface of type deploy and

does not depend of a class implementation

• Objects are more decoupled resulting in better

maintainability and reusability

• Easier testing because implementation can easily

be exchanged with a Mock

– DIContainer instantiates objects and resolves

dependencies during runtime

• Dependecies are often defined in a XML file

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

14

Translated by:H.Ozawa

Sample to Demonstrate Concept of DI

• Greeting

– Returns greeting String

• Greeting client class

– Output message from a Greeting class

• Greeting execution class

– Combines Greeting class with Greeting client

class

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

15

Translated by:H.Ozawa

Greeting.java

package examples.di;

public interface Greeting {
String greet();

}

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

16

Translated by:H.Ozawa

GreetingImpl.java

package examples.di.impl;

import examples.di.Greeting;

public class GreetingImpl implements Greeting {

public String greet() {
return "Hello World!";

}
}

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

17

Translated by:H.Ozawa

GreetingClient.java

package examples.di;

public interface GreetingClient {

void execute();
}

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

18

Translated by:H.Ozawa

GreetingClientImpl.java

package examples.di.impl;

import examples.di.Greeting;
import examples.di.GreetingClient;

public class GreetingClientImpl implements GreetingClient {

private Greeting greeting;

public void setGreeting(Greeting greeting) {
this.greeting = greeting;

}

public void execute() {
System.out.println(greeting.greet());

}
}

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

19

Translated by:H.Ozawa

beans.xml (Spring)

<beans>
<bean id="greeting"

class="examples.di.impl.GreetingImpl"/>
<bean id="greetingClient"

class="examples.di.impl.GreetingClientImpl">
<property name="greeting">

<ref bean="greeting"/>
</property>

</bean>
</beans>

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

20

Translated by:H.Ozawa

GreetingMain.java (Spring)

package examples.di.main;

import …;

public class GreetingMain {

public static void main(String[] args) {
ClassPathResource res =

new ClassPathResource("beans.xml");
XmlBeanFactory factory = new XmlBeanFactory(res);
GreetingClient greetingClient = (GreetingClient)

factory.getBean("greetingClient");
greetingClient.execute();

}
}

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

21

Translated by:H.Ozawa

Points to Remember from this Sample

• Class that uses the function (GreetingClientImpl)

– deployment type is declared in the interface

(Greeting) of a class that provides the function

– is not dependent on implementation of a class

(GreetingImpl)

• DI Configuration File (beans.xml)

– hads component declaration and DI information

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

22

Translated by:H.Ozawa

DI FAQ:Question 1

• Is interface a necessity?

– No. DI does not require developers to create an

interface. Using an interface, however, is strongly

recommended.

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

23

Translated by:H.Ozawa

DI FAQ:Question 2

• Why is it better to use an interface?

– Because if specification (interface) is decided on,

it is not necessary to be consciousness about the

actual implementation

• Unit test can be easily done by exchanging the

implementation with a Mock

• Concurrent development can be done more

smoothly because Mock can be used instead of

classes that is not yet developed

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

24

Translated by:H.Ozawa

DI FAQ:Question 3

• Isn’t it a hassle to think about the interface

from the start?

– Implementation should not begin before

specification is set

– It’s like wandering without knowing where to go.

Many problems are caused by this

– If specification is decided on, it shouldn’t be too

difficult to decide on interfaces

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

25

Translated by:H.Ozawa

DI FAQ:Question 4

• Doesn’t it conflict with XP YAGNI to first

decide on a specification?

– Should take caution against extensive design to

avoid YAGNI (You Arent Gonna Need It)

– Specification to be decided should be based on

what is currently required, not on what may be

required

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

26

Translated by:H.Ozawa

DI FAQ:Question 5

• Isn’t it OK to simply just implement the

classes if the specification is decided first?

– As answered in question 2, there are merits to

using interfaces

– If specification is decided on, creating interfaces

do not require too much time.

– Unless one person develops everything and that

person do all the maintenance, there is more

benefit to gain by taking a little bit of time to

create interfaces

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

27

Translated by:H.Ozawa

DI FAQ:Question 6

• Doesn’t it cause more complication

because it becomes more difficult to trace

class implementation from the source

code?

– If the specifications are clear, this shouldn’t be a

problem.

– Knowing what the class do is what’s important –

it’s not how that’s important

– It’s important to decouple component

independent of implementation. Benefits include

better maintainability and reusablity

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

28

Translated by:H.Ozawa

DI FAQ:Question 7

• It’s a hassle to write DI configuration in

XML files?

– You’re right

– This is the main problem with current DI

implementation (Spring)

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

29

Translated by:H.Ozawa

Problem with the Current DI

Implementation (Spring)

• XML Hell

– As the number of components increase, number

of XML files also increase leading to the entrance

of XML Hell

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

30

Translated by:H.Ozawa

Path to the Next Generation DI

(Seasar2)

• Less Configuration

– Decrease number of necessary configuration files

– But how?

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

31

Translated by:H.Ozawa

Less Configuration – Point 1

• Convention over Configuration

– Develop according to a convention, and let the

framework will do most of the configuration

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

32

Translated by:H.Ozawa

Convention over Configuration –

Example 1

• Convention

– Define property type in an interface

• Auto Configuration by the S2 framework

– If property type is an interface and there is an

object that implements this interface, dependecy

is automatically configured

– Trying to automatically configure every type is

dangerous but by limiting automatic configuration

to just an interface, it works in most

circumstances

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

33

Translated by:H.Ozawa

Convention over Configuration –

Example 2

• Convention

– Name implementation class XxxImpl when

interface name is Xxx

• Auto Configuration by the S2 framework

– Recursively search within a package for class

names ending with string “Impl” and automatically

register all such classes in a S2Container

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

34

Translated by:H.Ozawa

Result of Convention over

Configuration

• Component definition is unnecessary

• DI configuration is unnecessary

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

35

Translated by:H.Ozawa

beans.dicon (Seasar2)

<components>
<component
class="...FileSystemComponentAutoRegister">
<initMethod name="addClassPattern">

<arg>"examples.di.impl"</arg>
<arg>".*Impl"</arg>

</initMethod>
<initMethod name="registAll"/>

</component>
</components>

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

36

Translated by:H.Ozawa

Less Configuration – Point 2

• Configuration by Exception

– Decide on a default value. Use this value when

value is not specified

– If the default value is not appropriate, explicitly

set a value

– Use the principle of Convention over

Configuration and avoid explicitly specifying a

value as much as possible

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

37

Translated by:H.Ozawa

Less Configuration – Point 2

• Configuration by Exception

– Use annotation to configure

– Annotation is seen to be easier than XML

because it is nearer to the source code

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

38

Translated by:H.Ozawa

Example of Configuration by Exception

// Explicit specifying “hoge2”
@Binding("hoge2")
public void setHoge(Hoge hoge) {

this.hoge = hoge;
}

//Specifying not to automatically bind
@Binding(bindingType=BindingType.NONE)
public void setHoge(Hoge hoge) {

…;
}

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

39

Translated by:H.Ozawa

3 Types of Annotation

//Tiger annotation
@Binding("hoge2")
public void setHoge(Hoge hoge) {

this.hoge = hoge;
}

//bacckport175 annotation(works with JDK1.4K)
/**
* @...backport175.Binding("hoge2")
*/

public void setHoge(Hoge hoge) {
this.hoge = hoge;

}

//constant annotation
public static final String hoge_BINDING = "hoge2";

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

40

Translated by:H.Ozawa

What is Less Configured?

• Component declaration and DI

configuration

– Writing configuration files is a hassle and liable to

produce an error

– So, try to avoid writing configuration file as much

as possible

• Parameters dependent on an environment

– Parameter like database connection string is

dependent on an environment

– So, they should be specified in a configuration file

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

41

Translated by:H.Ozawa

Improvements in EJB3

• It’s POJO based

• Configuration can be done by annotation

– Supports Configuration by Exception

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

42

Translated by:H.Ozawa

Weakness of EJB3 over Seasar2

• Concept of Convention over Configuration

is not supported so some annotation are

still required

• Hassle to deploy

• Testing without a Mock can only be done

on an application server after deploying to

it

• AOP support is weak

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

43

Translated by:H.Ozawa

Highlight of Seasar2.4

• Capabilities to monitor automatic and

manual S2Container configuration from a

web

Copyright© 2004-2005, The Seasar Project and others. All rights reserved.

44

Translated by:H.Ozawa

Summary

• EJB failed in building components

• DI is more friendly because it is based on POJO

• Current DI implementation (Spring) leads

developers to gates of XML Hell as the

application becomes larger

• Next generation DI implementation (Seasar2) is

available to avoid XML Hell by using Less

Configuration concept

