Application System Easier
- Seasar2 and S2 Family

The Seasar Project
March 25, 2005

1
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved. O_

DI Container with O0OP

i~ Seasan What Is “Seasar”?

 Features of Seasar
— It's an Open Source software (SSL1.1 license)
— Pure Java
— DI container + AOP framework
— Pronounced “see” “sir”

— Seasar is a mystical dog-like creature in Okinawa
(Japan) - Developer of Seasar, Yasuo Higa, is from
Okinawa

« Goals of Seasar

— Reconstructure J2EE to make it more developer
friendly
(Only use the best parts of J2EE and make it lighter)

— Offer “ease” and “friendliness” to developers

| @
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

\¥ Seasar Seasar’s History

DI Container with O0OP

— Years 2001 to 2 pre-Seasar — Higa was working on an original
J2EE server, JTA, connection pooling, etc.

— Years 2002 to 3 initial Seasar version (S0) - Developed online
foreign currency exchange system using Tomcat and iBATIS for
StarLogic Inc. (WEB+DB PRESS Vo0l.15,16)

— Year 2003 Seasar V1 — all in one J2EE server
includes Flowlet, Rulet, Sqglet, Jetty, HSQLDB, GPSS, Eclipse

plugin

— Year 2004/4 Seasar2 — evolved to DI container
restructured former functionalities to be supported by DI

lated by: @'
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

L= Seasan Advantages of Components and DI

* Want to increased application system
development productivity

* Want better component reusability support

* But need more complex component than just a
simple class

 \What to do?

« Use interface
- separates specification from implementation
- define specification as an interface
- define implementation as as an “implements”

- o
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

> -
L= Seasan Advantages of Components and DI

with aaop

 Define Calculator interface

* This interface contains specification of
method multiply

public Interface Calculator {
public int multiply(int source, int by);

J

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

L= Seasan Advantages of Components and DI

« Calculator interface is still only a specification,
so we'll implement it

* Implement as a CalculaMachine class

public class CalculaMachine implements Calculator {

public int multiply(int source, int by) {
int ret = 0;
for (inti=0;i < by; i++) {
ret = ret + source,

}

return ret;

}
}

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved. O_

DI Container with O0OP

L= Seasan Advantages of Components and DI

« Will try using CalculaMachine class

Declare variable “calc” of type “Calculator”,

pu blic class Sam ple { and substitute CalculaMachine class entity

with “calc”

public static void main(String[] args) {

Calculator calc = new CalculaMachine();
System.out.printin(calc.multiply(10,100));

}

} C:\>java Sample
1000
7

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved. O_

Advantages of Components and DI

» CalculaMachine class is not quite
satisfactory so create a different class,
CalcMachine, that implements a
Calculator interface.

public class CalcMachine implements Calculator {

public int multiply(int source, int by){

return source * by;

}
}

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

! ' Seasar Advantages of Components and DI

ith aoe

 Will use CalcMachine class

Declare variable “calc” of type

pu bl |C CIaSS Sam ple { “Calculator”, and substitute

CalcMachine class entity with
(1% ca l C »

public static void main(String[] args) {

Calculator calc = new CalcMachine();
System.out.println(calc.multiply(10,100));

} Note that only implementation C:\>java Sample
was changed 1000

| ®-
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DL Advantages of Components and DI :
o Seasan :
. 5 1-- e DF Container with OOP Unlt TeS.I-

 Trouble, if there is an error in the class implementation!
=> need assurance the module satisfies the specification
= unit test

MImplementation class to test
public class CalcMachine implements Calculator {

public int multiply(int source, int by) {
return source * by;

}

Y
M Unit test code

public class CalcMachineTest extends TestCase {
public void testMultiply() {
CalcMachine calc = new CalcMachine();
int ret = calc.multiply(10,100);
asserteEquals(ret,1000);

}

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

L= Seasan Advantages of Components and DI

* \What one further Want to exchange without
functionality modifying code each time!

public class Sample {
public static void main
Calculator calc = ;
System.out.printin(calc.multiply(10,100));

;
;

lated by: @'
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

\¥ Seasar Using a DIContainer

 Move component configuration to an external file
pUbIIC CIaSS Sample { Start container (similar
public static void main(String[] args) { e j

S2Container container =
S2ContainerFactory.create(PATH); Registeraclassme]

Calculator calc =
. =
(CalcuIator)contalner.getComponent("calc"*

System.out.printin(calc.multiply(10,100));

}
}

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved. O_

Invoke a method using registered class as an endpoint. ’

\¥ Seasar Using a DIContainer

DI Container with O0OP

 Configuration file (.dicon file)

<?xml version="1.0" encoding="Shift_JIS"?>

<IDOCTYPE components PUBLIC "-//SEASAR//DTD S2Container//EN"
"http://www.seasar.org/dtd/components.dtd">

<components>

<component name= "calc" class= "CalcMachine">

—<{eomponent>

</components>

By just changing here, it 1s possible to
exchange classes without modifying any
code

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

Seasan What does a DI Container Do?

* Dependency Injection

— Remove dependencies between components during
development. More concretely,

* (1) Remove new (independent of implementation class)
* (2) Remove instantiation of beans

— A container injects dependencies during runtime
* (1) Instead of “new”, the container creates a instance of a variable
» (2) The container instantiates beans
« Components associates with other components only
through their interfaces. In other words, only interfaces
dare necessary.

* DI container associates components according to the
configuration file
— Dependencies are dynamically constructed during runtime

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

The Most Important Point of DI

e By separating of interface and
implementation, decouple dependencies
between implementation classes

e Merits
— Better maintainability
— Better quality
— Lessen development time
— Improved reusability

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

L= Seasan S2 Family

DI Container with O0OP

 Don’t want to be concerned about bootstrapping a
container!

« Can’t create a system just by components

« S2JSF Assist develop HTML based systems

— Don’t have to know Servlet and JSP
— Automatically set request/response parameters to a POJO
— Write methods to invoke within HTML

« S2Axis Wrap web service
— Seamlessly call POJO on a remote server

e S2Dao Access RDBMS

— Automatic mapping of RDBMS rows and POJOs
— Most SQL statements are generated
— Complex SQL statements may be written in an external file

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

s Architecture

DI Container with O0OP

User
Application
Web Browser
oS
/ J2EE container
Browser client ™~ S2ISF User
T Compo [S2Dao RDBMS
> nents
Seasar2
Tava VM Database
oS Server
User - -
Application Web Service Application server

Runtime Env. on HTTP
OS

7 N i3]

Rich client
or
.. Eclipse
Server appllcatlon (with J2EE container)
Java VM
oS

y D

Application development environment

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

~ Seasan

DI Container with O0OP

4} C:¥Documents and Settings¥Adminis
| srine wEE ®rw smcne v-nn R

| #55 - = - @@ & | Quz Gezcin >

B Create HTML file | PrVA@ [E cvooc=] @18 || Google - |

d
<html xmIns:m="http://www.seasar.org/maya"> | 4 -5 o
<head> @ -shETmEngle | [[[Ee ik 4
<meta http-equiv="Content-Type" content="text/html" />
</head>
<body>
<form>

<input type="text” m:value="#{dto.source}’/> *

<input type="text" m:value="#{dto.by}"/> =

<input type="submit" value="Calculate" m:action="#{calcAction.execute}"/>
</form>
</body>
</html>

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

(= Seasan

DI Container with O0OP

S2JSF

public class DtO implements Serializable {

private int source;
private int by;
private int result;

public Dto() {
}

public int getSource() {
return source;

}

public void setSource(int source) {
this.source = source;

public class CalcActionlmpl implements CalcAction {

private Dto dto;
private Calculator calc;
public CalcActionimpl() {

}

public void setDto(Dto dto) {
this.dto = dto;

}

public void setCalculator(Calculator calc) {
this.calc = calc;

}

y public String execute() {
p‘riebt'L'ﬁr;”;ﬁetBy(){ dto.setResult(calc.multiply(dto.getSource(), dto.getBy()));
) ’ return null;
public void setBy(int by) { }
this.by = by; }
}
public int getResuIt() { <components>
return result; “ " " . " "
) <component name="“dto" class="Dto" instance="request"/>
public void setResult(int result) { | <component name="calcAction" class="CalcActionlmpl" instance="request"/>
this.result = result; <component class="CalcMachine"/>
¥ </components>

}

Translated by: H.Ozawa

19
Copyright© 2005, The Seasar Project and others. All rights reserved. O_

S2AXis

M Register web service as a POJO on S2

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE components PUBLIC "-//SEASAR2.1//DTD S2Container//EN"

"http://www.seasar.org/dtd/components21.dtd">
<components>
<component name="calc" class="CalcMachine">

<meta name="s2-axis:service">
<component class="org.seasar.remoting.axis.ServiceDef">

<property name="serviceType">
@Calculator@class

</property>
</component>
</meta>
</component>
</components>

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

L= Seasan S2Axis

DI Container with O0OP

mog (| B

M Invoked from C# |

private void button1_Click(object sender, EventArgs e)

{

/I get Web service

CalculatorService calc = new CalculatorService();

// invoke a method

int ret = calc.multiply(Convert.Tolnt32(textBox1.Text)
,Convert.Tolnt32(textBox2.Text)

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

BWRDBMS tables are as follows: L —
CREATE TABLE [PERSONS Dl

({PersonNo INTEGER, PersonName VARCHAR(100)); | |PEsons

M Define a class to hold records —

public class Person implements Serializable {

—>t0 next page

/] associate with a table in RDBMS
public static final String TABLE = "PERSONSH:

/| Define fields to hold each column

private int personNo;
Person
private String personName; E———

=

- p e: int

me:
+ getPersonNo() : int
onNo

+ setPers (int) : void

+ getPersonName() : String

Il setter/getter and so on... - Seipersomiame(sinng " void

}

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

S2Dao

Bl Create DAO (Data Access Object) Persan
public interface PersonDao { - B
from previous page |+ EZEEZEEENE&;S“? void
. : L eroNameSimne vod
// associate with a class to hold recor .
public Class BEAN = Person.class; ~_
PERSONS
. tabl
/| following method generates SQL statements e

public List getAllPersons();
public String getPersonName_ARGS = "personNo";
public String getPersonName(Integer personNo);

PersonDao

+ getAllPersons() : List
+ getPersonName(int) : String
+ getCount() : void

// following method executes an user defined SQL statermernt
public int getCount(); omoratod SOL

})

PersonDao_getCount.sql
file

M File containing user defined SQL st;t‘ement (PersonDao_getogurreogrriey
SELECT count(*) FROM PERSONS

Translated by: H.0zawa Copyright© 2005, The Seasar Project and others. All rights reserved.

S2Dao

B Define components in a dicon file

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE components PUBLIC "-//SEASAR//DTD
S2Container//EN"

"http://www.seasar.org/dtd/components.dtd">

<components>
<include path="dao.dicon"/>

<component class="PersonDao">
<aspect>dao.interceptor</aspect>

</component>
</components>

24
Copyright© 2005, The Seasar Project and others. All rights reserved. O_

Translated by: H.Ozawa

S2Dao

M Call DAO from some other class
public class PersonLogicimpl implements PersonlLogic {
private PersonDao personDao;

public void setPersonDao(PersonDao personDao) {

this.personDao = personDao;

} When this class is initiated, DAO will
be injected by S2

public void execute() {
List persons = personDao.getAllPersons();
String personName = personDao.getPersonName(123);
int cnt = personDao.getCount();

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

L= Seasan What is AOP?

* Aspect Oriented Programming

* Feature to add functionalities transparently after
application is coded
— Weaving AOP does not change the core process
— New functionalities are added using AOP

* Horizontally between components, Vertically
between processes

* Crosscutting Concern:
— Should be attractive to system managers
— Logging, transaction, authentication, exception

* Function common to application logics In
components

* Do not overuse!

lated by: @'
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

o — Example of Aspect XML
L Seasan
Y Pa DJ Container with aOP Conflg“.[ail.o_n£l.l_e_

package tutorial.org.seasar.console;
public class HandlingCar implements Car {
public void run() {
System.out.printin("Turn right!");

}
}

<?xml| version="1.0" encoding="UTF-8"?>
<{components>

<component name="paintedCar” class="HandlingCar™>
<aspect pointcut="run”>
<component class="ABS”/>
{/aspect>

</component> pointcut attribute specifies method to Aspect I

</components>
{ 27

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved. \)_

L\~ Seasar MethodInterceptor

DI Container with O0OP

* MethodlInterceptor divides into 2 parts during
execution
— Before and after MethodInvocation#proceed() invocation
— Before invocation is “Before”
— After invocation is “After”

public class ABS implements MethodInterceptor {
public Object invoke(MethodInvocation invocation) throws Throwable {

Before ——— System.out.printin("Ooops, danger! ");

Object ret = invocation.proceed();

After ———— System.out.printin("kikikiki...");
return ret; Re_sy Ooops, danger!
} Turn right!
} Kikikiki...

ated by (-
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

c Seasan Transaction Processing (without AOP)

DI Container with O0OP

J Application Logic
— Start a transaction if not already started
— Application program codes
— Commit transaction if there is no error
- Rollback transaction if there is an error

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

L= Seasan Transaction Processing (with AOP)

DI Container with O0OP

e Application Logic
— What the application is suppose to do
e Crosscutting concern

— Start a transaction if it is not already started
— Call on the application logic

— Commit transaction if there is no error

— Rollback transaction if there is an error

e \Weave crosscutting concern into application logic by
associating them in a configuration file
<component class="application logic class">
<aspect>
<component class="crosscutting concern class"/>
<aspect>
</component>

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

Seasan S2Tx

DI Container with O0OP

« J2EE Transaction

— Implements JTA

— Seasar2 Extension package
* Transparent Service

— Only configuration is necessary. There is no need to write
code associate Tx

<?xml| version="1.0" encoding="UTF-8"7)>
{components>
<include path="j2ee.dicon™>

<component class=“PersonLogiclmp|™>

<aspect> j2ee. requiredTx</aspect>
</component>
</components> Only have to specify Tx Interceptor in aspect
tag
| |

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

DI Container with O0OP

Seasan Create Configuration Files Easily!

Outline

« Writing XML is difficult

e e

+ |
i SO Want a tOOI to erte |t e[A Dicor) — - tutorial/ore/seasar/consoles/ TestA dic
) =y +- G T -
- 7 licon A FA M . .
. . . = : — + -8 tutorialfore/eazar/seazarfar ftet
¢ Want |t aS an EC'IpSG plugln' =@ tutn:-r|alfgrgfseasar;"cansale +- 4 javautilHazhMap<map:
[# tutorial/orefzeazar/cong .
[S (9 tutorial/ore/seasar/cansole/du +- %€ tutorialore zeaszar.console TestAlmy
—_— N N - javautil. HazhMap< map:
=> Kijimuna ey ittt
: =G T—ibd—
—|-- % tutorialoreseasarconsole. T
. N B thap
" e — SR M e R L
B autoinjectiondicon X +ge Javaioserializable
: bt dummy + javalane Cloneable
CPeml werzion=" 1.0° encoding=" shift JI5" 7 +- e tutorialore zeasar.col i J R
{DOCTYPE components PUBLIC “-//SEASAR21//DTD S2Cantainer//EN" a. [test"] -0 javautilMap
"http:ﬁwww.seasar.nrg{dtd;"ul:vnmpnnentsE'I.dtu:l"} -~) w —|- % javautil Arraylist<lists
{components namespace=" main” #, [Houtprintnhoze”)] 08 Toft—ibE—
. . . . +-- % [new javautilDate0]<oenl> :
<include path="tutorial/ore/zeazar fconsole/ Test A dicon”™ pe it
<companent name:: mae" u:Iassifjava.u.tiI.HashMae"ﬁ} + g javainSerializable
Lcomponent name=" list” clags="javautil frrayLizt” + T bl
T ! o w . javalang Cloneable
<oomponent claze="tutorialorg seazar conzole TestClnpl instance="request” > B i . i
<initMethod name="injectLizt">] oo javautilCollection
<finitMethad:> <vare 2 +- 4 javautil List
</companent> ¢ > description +-04 javautil Fandombocess
< /components> ¢ st +- % tutorialoreseazar.conzole TestCImpl
¥ +-(# tutorial/ore/seazar/conzole/car dicon
map +- (8 tutorial/ore/seazar /conzole/dtd dicon
(B jar -~ E/zeazarfconzale/roat dicon
- E & =Y A Arerdi
-9 —+H ESzeasar/conzale/ rrr dicon
Ipl” instance="request"> -4 Property | “alue .
<> auter ! — &
<E>pratotyps Lf ggﬁ?ﬁﬁ'—'ygl tDutDriaI.Drg.seasar.cunsuIe.TestGImpI#inje-:tL
<f>requ§st g |§r8y javautil List
<iFgeszon BEh- i hegts javautil BrravList<list: @tutorial fore Sseazar
<irginglaton 1E{EEY woid

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

SOCEO !
: r‘i_,' X

L

2 Seasan Current S2 Family

DI Container with O0OP

 Core Products
— S2Container (DI container)
— S2AO0P (conform with AOP alliance)
— S2Tx(automatic transaction control)
— S2DBCP (connection pooling)
— S2JDBC (similar to Jakarta DbUtils)
— S2Unit (similar to test first tool)

» Peripheral Products
— S2JSF
— S2Dao
— S2Axis
— S2Remoting
— S2GroovyBuilder (write configuration file in Groovy)
— S20penAMF (Flash Remoting)
— S2Hibernate
— S2Struts
— S2Tapestry
— Maya
— etc...(sandbox projects)
* Eclipse Plugins
— Kijimuna
— S2JSF plugin

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

Future of Seasar

* \What would be the relationship with the
next generation J2EE — especially EJB3?

Seasar Project will support EJB3.0

Please Look Forward!

lated by: @'
Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

= Seasan

DI Container with O0OP

Thank you

Translated by: H.Ozawa Copyright© 2005, The Seasar Project and others. All rights reserved.

