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What Is “Seasar”?

• Features of Seasar
– It’s an Open Source software （SSL1.1 license）

– Pure Java

– DI container + AOP framework

– Pronounced “see” “sir”

– Seasar is a mystical dog-like creature in Okinawa 
(Japan)  - Developer of Seasar, Yasuo Higa, is from 
Okinawa

• Goals of Seasar
– Reconstructure J2EE to make it more developer 

friendly
（Only use the best parts of J2EE and make it lighter)

– Offer “ease” and “friendliness” to developers
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Seasar’s History

– Years 2001 to 2 pre-Seasar – Higa was working on an original 

J2EE server, JTA, connection pooling, etc.

– Years 2002 to 3 initial Seasar version (S0） - Developed online 

foreign currency exchange system using Tomcat and iBATIS for 

StarLogic Inc. (WEB+DB PRESS Vol.15,16)

– Year 2003 Seasar V1 – all in one J2EE server

includes Flowlet, Rulet, Sqlet, Jetty, HSQLDB, GPSS, Eclipse 

plugin

– Year 2004/4 Seasar2 – evolved to DI container

restructured former functionalities to be supported by DI
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Advantages of Components and DI

• Want to increased application system 
development productivity

• Want better component reusability support

• But need more complex component than just a 
simple class

• What to do?

• Use interface

- separates specification from implementation

- define specification as an interface

- define implementation as as an “implements”
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Advantages of Components and DI

• Define Calculator interface

• This interface contains specification of 

method multiply

public interface Calculator {

public int multiply(int source, int by);

}
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Advantages of Components and DI

• Calculator interface is still only a specification, 

so we’ll implement it

• Implement as a CalculaMachine class

public class CalculaMachine implements Calculator {

public int multiply(int source, int by) {

int ret = 0;

for (int i = 0; i < by; i++) {

ret = ret + source;

}

return ret;

}

}
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Advantages of Components and DI

• Will try using CalculaMachine class

public class Sample {

public static void main(String[] args) {

Calculator calc = new CalculaMachine();

System.out.println(calc.multiply(10,100));

}

} C:\>java Sample

1000

Declare variable “calc” of type “Calculator”, 

and substitute CalculaMachine class entity 

with “calc”
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Advantages of Components and DI

• CalculaMachine class is not quite 

satisfactory so create a different class, 

CalcMachine, that implements a 

Calculator interface.
public class CalcMachine implements Calculator {

public int multiply(int source, int by) {

return source * by;

}

}
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Advantages of Components and DI

• Will use CalcMachine class

public class Sample {

public static void main(String[] args) {

Calculator calc = new CalcMachine();

System.out.println(calc.multiply(10,100));

}

} C:\>java Sample

1000

Declare variable “calc” of type 

“Calculator”, and substitute 

CalcMachine class entity with 

“calc”

Note that only implementation

was changed
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Advantages of Components and DI ：
Unit Test

• Trouble, if there is an error in the class implementation!

=> need assurance the module satisfies the specification

= unit test

■Implementation class to test

public class CalcMachine implements Calculator {

public int multiply(int source, int by) {

return source * by;

}

}

■Unit test code

public class CalcMachineTest extends TestCase {

public void testMultiply() {

CalcMachine calc = new CalcMachine();

int ret = calc.multiply(10,100);

assertEquals(ret,1000);

}

}
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Advantages of Components and DI

• What one further 

functionality…

public class Sample {

public static void main(String[] args) {

Calculator calc =                                       ;

System.out.println(calc.multiply(10,100));

}

}

Want to exchange without 

modifying code each time! 
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Using a DIContainer

• Move component configuration to an external file

public class Sample {

public static void main(String[] args) {

S2Container container =

S2ContainerFactory.create(PATH);

Calculator calc =

(Calculator)container.getComponent("calc");

System.out.println(calc.multiply(10,100));

}

}

Start container（similar 

to starting JVM）

Register a class in a 

container

Invoke a method using registered class as an endpoint.
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Using a DIContainer

• Configuration file （.dicon file）

<?xml version="1.0" encoding="Shift_JIS"?>

<!DOCTYPE components PUBLIC "-//SEASAR//DTD S2Container//EN"

"http://www.seasar.org/dtd/components.dtd">

<components>

<component name= "calc" class= "CalcMachine">

</component>

</components>

By just changing here, it is possible to 

exchange classes without modifying any 

code
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What does a DI Container Do?

• Dependency Injection
– Remove dependencies between components during 

development. More concretely,

• (1) Remove new (independent of implementation class)

• (2) Remove instantiation of beans

– A container injects dependencies during runtime

• (1) Instead of “new”, the container creates a instance of a variable

• (2) The container instantiates beans

• Components associates with other components only 
through their interfaces. In other words, only interfaces only interfaces 
are necessary.are necessary.

• DI container associates components according to the 
configuration file

– Dependencies are dynamically constructed during runtime
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The Most Important Point of DI

• By separating of interface and 

implementation, decouple dependencies 

between implementation classes

• Merits

–Better maintainability

–Better quality

– Lessen development time

– Improved reusability
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S2 Family

• Don’t want to be concerned about bootstrapping a 
container!

• Can’t create a system just by components

•• S2JSFS2JSF Assist develop HTML based systemsAssist develop HTML based systems
– Don’t have to know Servlet and JSP

– Automatically set request/response parameters to a POJO

– Write methods to invoke within HTML

•• S2AxisS2Axis Wrap web serviceWrap web service
– Seamlessly call POJO on a remote server

•• S2DaoS2Dao Access RDBMSAccess RDBMS
– Automatic mapping of RDBMS rows and POJOs

– Most SQL statements are generated

– Complex SQL statements may be written in an external file
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S2JSF

■■■■Create HTML file

<html xmlns:m="http://www.seasar.org/maya">

<head>

<meta http-equiv="Content-Type" content="text/html" />

</head>

<body>

<form>

<span m:inject="h:messages" m:globalOnly="false" m:showDetail="true"/>

<input type=“text” m:value=“#{dto.source}”/> * 

<input type="text" m:value="#{dto.by}"/> =

<span m:value="#{dto.result}"/> 

<input type="submit" value=“Calculate" m:action="#{calcAction.execute}"/>

</form>

</body>

</html>
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S2JSF

public class Dto implements Serializable {

private int source;

private int by;

private int result;

public Dto() {

}

public int getSource() {

return source;

}

public void setSource(int source) {

this.source = source;

}

public int getBy() {

return by;

}

public void setBy(int by) {

this.by = by;

}

public int getResult() {

return result;

}

public void setResult(int result) {

this.result = result;

}

}

public class CalcActionImpl implements CalcAction {

private Dto dto;

private Calculator calc;

public CalcActionImpl() {

}

public void setDto(Dto dto) {

this.dto = dto;

}

public void setCalculator(Calculator calc) {

this.calc = calc;

}

public String execute() {

dto.setResult(calc.multiply(dto.getSource(), dto.getBy()) );

return null;

}

}

<components>

<component name=“dto" class="Dto" instance="request"/>

<component name=“calcAction" class=“CalcActionImpl" instance="request"/>

<component class=“CalcMachine"/>

</components>
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S2Axis

■Register web service as a POJO on S2

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE components PUBLIC "-//SEASAR2.1//DTD S2Container//EN"

"http://www.seasar.org/dtd/components21.dtd">

<components>

<component name="calc" class="CalcMachine">

<meta name="s2-axis:service">

<component class="org.seasar.remoting.axis.ServiceDef">

<property name="serviceType">

@Calculator@class

</property>

</component>

</meta>

</component>

</components>
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S2Axis

■Invoked from C#

private void button1_Click(object sender, EventArgs e)

{

//  get Web service

CalculatorService calc = new CalculatorService();

//  invoke a method

int ret = calc.multiply(  Convert.ToInt32(textBox1.Text)

,Convert.ToInt32(textBox2.Text)

);

}
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S2Dao

■RDBMS tables are as follows:

CREATE TABLE PERSONS

( PersonNo INTEGER, PersonName VARCHAR(100) );

■Define a class to hold records

public class Person implements Serializable {

// associate with a table in RDBMS

public static final String TABLE = "PERSONS";

// Define fields to hold each column

private int personNo;

private String personName;

:

// setter/getter and so on…

}

to next page

PERSONS

table

Pers onPers onPers onPers on

- personNo:  int
- personName:  int

+ getPersonNo() : int
+ setPersonNo(int) : void
+ getPersonName() : String
+ setPersonName(String) : void
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S2Dao

■Create DAO（Data Access Object）

public interface PersonDao {

// associate with a class to hold records

public Class BEAN = Person.class;

//  following method generates SQL statements

public List getAllPersons();

public String getPersonName_ARGS = "personNo";

public String getPersonName(Integer personNo);

// following method executes an user defined SQL statement

public int getCount();

}

■File containing user defined SQL statement (PersonDao_getCount.sql file)

SELECT count(*) FROM PERSONS

from previous page

PersonDao_getCount.sql

file

PERSONS

table

Pers onPers onPers onPers on

- personNo:  int
- personName:  int

+ getPersonNo() : int
+ setPersonNo(int) : void
+ getPersonName() : String
+ setPersonName(String) : void

PersonDao

+ get AllPersons() : List
+ get PersonName(int ) : St ring
+ get Count () : void

Generated SQL
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S2Dao

■Define components in a dicon file

<?xml version="1.0" encoding=“UTF-8"?>

<!DOCTYPE components PUBLIC "-//SEASAR//DTD 
S2Container//EN"

"http://www.seasar.org/dtd/components.dtd">

<components>

<include path="dao.dicon"/>

<component class="PersonDao">

<aspect>dao.interceptor</aspect>

</component>
</components>
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S2Dao

■Call DAO from some other class

public class PersonLogicImpl implements PersonLogic {

private PersonDao personDao;

public void setPersonDao(PersonDao personDao) {

this.personDao = personDao;

}

public void execute() {

List persons = personDao.getAllPersons();

String personName = personDao.getPersonName(123);

int cnt = personDao.getCount();

}

}

When this class is initiated, DAO will 

be injected by S2



Copyright© 2005, The Seasar Project and others. All rights reserved.
26

Translated by: H.Ozawa

What is AOP?

• Aspect Oriented Programming

• Feature to add functionalities transparently after 
application is coded
– Weaving AOP does not change the core process

– New functionalities are added using AOP

• Horizontally between components, Vertically 
between processes

• Crosscutting Concern：
– Should be attractive to system managers

– Logging, transaction, authentication, exception

• Function common to application logics in 
components

• Do not overuse!
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Example of Aspect XML 

Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<components>

<component name="paintedCar" class="HandlingCar">
<aspect <aspect <aspect <aspect pointcutpointcutpointcutpointcut="run">="run">="run">="run">

<component class="ABS"/><component class="ABS"/><component class="ABS"/><component class="ABS"/>
</aspect></aspect></aspect></aspect>

</component>
</components>

pointcut attribute specifies method to Aspect

package tutorial.org.seasar.console;

public class HandlingCar implements Car {

public void run() {

System.out.println("Turn right!");

}

}
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• MethodInterceptor divides into 2 parts during 
execution

– Before and after MethodInvocation#proceed() invocation

– Before invocation is “Before”

– After invocation is “After”

public class ABS implements MethodInterceptor {

public Object invoke(MethodInvocation invocation) throws Throwable {

System.out.println("Ooops, danger! ");

Object ret = invocation.proceed();

System.out.println("kikikiki...");

return ret;

}

}

System.out.println("Ooops, danger! ");

System.out.println("kikikiki...");

Before

After

Ooops, danger! 
Turn right!

kikikiki...

ResultResult

MethodInterceptor
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Transaction Processing (without AOP)

• Application Logic

– Start a transaction if not already started

– Application program codes

– Commit transaction if there is no error

– Rollback transaction if there is an error
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Transaction Processing (with AOP)

• Application Logic
– What the application is suppose to do

• Crosscutting concern

– Start a transaction if it is not already started
– Call on the application logic

– Commit transaction if there is no error

– Rollback transaction if there is an error

• Weave crosscutting concern into application logic by 
associating them in a configuration file

<component class=“application logic class">

<aspect>

<component class=“crosscutting concern class"/>

<aspect>

</component>
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S2Tｘ

• J2EE Transaction
– Implements JTA

– Seasar2 Extension package

• Transparent Service
– Only configuration is necessary. There is no need to write  

code associate Tx

<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF----8"?>8"?>8"?>8"?>
<components>

<include path="j2ee.dicon">

<component class=“PersonLogicImplPersonLogicImplPersonLogicImplPersonLogicImpl">

<aspect><aspect><aspect><aspect>j2ee.requiredTxj2ee.requiredTxj2ee.requiredTxj2ee.requiredTx</aspect></aspect></aspect></aspect>
</component>

</components> Only have to specify Tx Interceptor in aspect
tag
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Create Configuration Files Easily!

• Writing XML is difficult

• So, want a tool to write it

• Want it as an Eclipse plugin!

=> Kijimuna
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Current S2 Family

• Core Products

– S2Container （DI container）

– S2AOP （conform with AOP alliance）

– S2Tx（automatic transaction control ）

– S2DBCP（connection pooling ）

– S2JDBC （similar to Jakarta DbUtils）

– S2Unit （similar to test first tool）

• Peripheral Products

– S2JSF

– S2Dao

– S2Axis

– S2Remoting

– S2GroovyBuilder（write configuration file in Groovy）

– S2OpenAMF（Flash Remoting）

– S2Hibernate 

– S2Struts 

– S2Tapestry

– Maya 

– etc…(sandbox projects)

• Eclipse Plugins

– Kijimuna

– S2JSF plugin
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Future of Seasar

• What would be the relationship with the 

next generation J2EE – especially EJB3?

Seasar Project will support EJB3.0

Please Look Forward!
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Thank you


