
Copyright© 2005, The Seasar Project and others. All rights reserved.
1

Translated by: H.Ozawa

Software to Make Building

Application System Easier

- Seasar2 and S2 Family

The Seasar Project

March 25, 2005

Copyright© 2005, The Seasar Project and others. All rights reserved.
2

Translated by: H.Ozawa

What Is “Seasar”?

• Features of Seasar
– It’s an Open Source software （SSL1.1 license）

– Pure Java

– DI container + AOP framework

– Pronounced “see” “sir”

– Seasar is a mystical dog-like creature in Okinawa
(Japan) - Developer of Seasar, Yasuo Higa, is from
Okinawa

• Goals of Seasar
– Reconstructure J2EE to make it more developer

friendly
（Only use the best parts of J2EE and make it lighter)

– Offer “ease” and “friendliness” to developers

Copyright© 2005, The Seasar Project and others. All rights reserved.
3

Translated by: H.Ozawa

Seasar’s History

– Years 2001 to 2 pre-Seasar – Higa was working on an original

J2EE server, JTA, connection pooling, etc.

– Years 2002 to 3 initial Seasar version (S0） - Developed online

foreign currency exchange system using Tomcat and iBATIS for

StarLogic Inc. (WEB+DB PRESS Vol.15,16)

– Year 2003 Seasar V1 – all in one J2EE server

includes Flowlet, Rulet, Sqlet, Jetty, HSQLDB, GPSS, Eclipse

plugin

– Year 2004/4 Seasar2 – evolved to DI container

restructured former functionalities to be supported by DI

Copyright© 2005, The Seasar Project and others. All rights reserved.
4

Translated by: H.Ozawa

Advantages of Components and DI

• Want to increased application system
development productivity

• Want better component reusability support

• But need more complex component than just a
simple class

• What to do?

• Use interface

- separates specification from implementation

- define specification as an interface

- define implementation as as an “implements”

Copyright© 2005, The Seasar Project and others. All rights reserved.
5

Translated by: H.Ozawa

Advantages of Components and DI

• Define Calculator interface

• This interface contains specification of

method multiply

public interface Calculator {

public int multiply(int source, int by);

}

Copyright© 2005, The Seasar Project and others. All rights reserved.
6

Translated by: H.Ozawa

Advantages of Components and DI

• Calculator interface is still only a specification,

so we’ll implement it

• Implement as a CalculaMachine class

public class CalculaMachine implements Calculator {

public int multiply(int source, int by) {

int ret = 0;

for (int i = 0; i < by; i++) {

ret = ret + source;

}

return ret;

}

}

Copyright© 2005, The Seasar Project and others. All rights reserved.
7

Translated by: H.Ozawa

Advantages of Components and DI

• Will try using CalculaMachine class

public class Sample {

public static void main(String[] args) {

Calculator calc = new CalculaMachine();

System.out.println(calc.multiply(10,100));

}

} C:\>java Sample

1000

Declare variable “calc” of type “Calculator”,

and substitute CalculaMachine class entity

with “calc”

Copyright© 2005, The Seasar Project and others. All rights reserved.
8

Translated by: H.Ozawa

Advantages of Components and DI

• CalculaMachine class is not quite

satisfactory so create a different class,

CalcMachine, that implements a

Calculator interface.
public class CalcMachine implements Calculator {

public int multiply(int source, int by) {

return source * by;

}

}

Copyright© 2005, The Seasar Project and others. All rights reserved.
9

Translated by: H.Ozawa

Advantages of Components and DI

• Will use CalcMachine class

public class Sample {

public static void main(String[] args) {

Calculator calc = new CalcMachine();

System.out.println(calc.multiply(10,100));

}

} C:\>java Sample

1000

Declare variable “calc” of type

“Calculator”, and substitute

CalcMachine class entity with

“calc”

Note that only implementation

was changed

Copyright© 2005, The Seasar Project and others. All rights reserved.
10

Translated by: H.Ozawa

Advantages of Components and DI ：
Unit Test

• Trouble, if there is an error in the class implementation!

=> need assurance the module satisfies the specification

= unit test

■Implementation class to test

public class CalcMachine implements Calculator {

public int multiply(int source, int by) {

return source * by;

}

}

■Unit test code

public class CalcMachineTest extends TestCase {

public void testMultiply() {

CalcMachine calc = new CalcMachine();

int ret = calc.multiply(10,100);

assertEquals(ret,1000);

}

}

Copyright© 2005, The Seasar Project and others. All rights reserved.
11

Translated by: H.Ozawa

Advantages of Components and DI

• What one further

functionality…

public class Sample {

public static void main(String[] args) {

Calculator calc = ;

System.out.println(calc.multiply(10,100));

}

}

Want to exchange without

modifying code each time!

Copyright© 2005, The Seasar Project and others. All rights reserved.
12

Translated by: H.Ozawa

Using a DIContainer

• Move component configuration to an external file

public class Sample {

public static void main(String[] args) {

S2Container container =

S2ContainerFactory.create(PATH);

Calculator calc =

(Calculator)container.getComponent("calc");

System.out.println(calc.multiply(10,100));

}

}

Start container（similar

to starting JVM）

Register a class in a

container

Invoke a method using registered class as an endpoint.

Copyright© 2005, The Seasar Project and others. All rights reserved.
13

Translated by: H.Ozawa

Using a DIContainer

• Configuration file （.dicon file）

<?xml version="1.0" encoding="Shift_JIS"?>

<!DOCTYPE components PUBLIC "-//SEASAR//DTD S2Container//EN"

"http://www.seasar.org/dtd/components.dtd">

<components>

<component name= "calc" class= "CalcMachine">

</component>

</components>

By just changing here, it is possible to

exchange classes without modifying any

code

Copyright© 2005, The Seasar Project and others. All rights reserved.
14

Translated by: H.Ozawa

What does a DI Container Do?

• Dependency Injection
– Remove dependencies between components during

development. More concretely,

• (1) Remove new (independent of implementation class)

• (2) Remove instantiation of beans

– A container injects dependencies during runtime

• (1) Instead of “new”, the container creates a instance of a variable

• (2) The container instantiates beans

• Components associates with other components only
through their interfaces. In other words, only interfaces only interfaces
are necessary.are necessary.

• DI container associates components according to the
configuration file

– Dependencies are dynamically constructed during runtime

Copyright© 2005, The Seasar Project and others. All rights reserved.
15

Translated by: H.Ozawa

The Most Important Point of DI

• By separating of interface and

implementation, decouple dependencies

between implementation classes

• Merits

–Better maintainability

–Better quality

– Lessen development time

– Improved reusability

Copyright© 2005, The Seasar Project and others. All rights reserved.
16

Translated by: H.Ozawa

S2 Family

• Don’t want to be concerned about bootstrapping a
container!

• Can’t create a system just by components

•• S2JSFS2JSF Assist develop HTML based systemsAssist develop HTML based systems
– Don’t have to know Servlet and JSP

– Automatically set request/response parameters to a POJO

– Write methods to invoke within HTML

•• S2AxisS2Axis Wrap web serviceWrap web service
– Seamlessly call POJO on a remote server

•• S2DaoS2Dao Access RDBMSAccess RDBMS
– Automatic mapping of RDBMS rows and POJOs

– Most SQL statements are generated

– Complex SQL statements may be written in an external file

Copyright© 2005, The Seasar Project and others. All rights reserved.
17

Translated by: H.Ozawa

OS

Java VM

J2EE container

User

Compo

nents

Seasar2

S2Dao

S2Axis

S2JSF

OS

Runtime Env.

User

Application

RDBMS

Application server

Rich client

or

Server application

Database

server

Web Service

on HTTP

OS

Java VM

Eclipse

(with J2EE container)

配布

Application development environment

OS

Web Browser

User

Application

Browser client

HTTP

Architecture

Copyright© 2005, The Seasar Project and others. All rights reserved.
18

Translated by: H.Ozawa

S2JSF

■■■■Create HTML file

<html xmlns:m="http://www.seasar.org/maya">

<head>

<meta http-equiv="Content-Type" content="text/html" />

</head>

<body>

<form>

<input type=“text” m:value=“#{dto.source}”/> *

<input type="text" m:value="#{dto.by}"/> =

<input type="submit" value=“Calculate" m:action="#{calcAction.execute}"/>

</form>

</body>

</html>

Copyright© 2005, The Seasar Project and others. All rights reserved.
19

Translated by: H.Ozawa

S2JSF

public class Dto implements Serializable {

private int source;

private int by;

private int result;

public Dto() {

}

public int getSource() {

return source;

}

public void setSource(int source) {

this.source = source;

}

public int getBy() {

return by;

}

public void setBy(int by) {

this.by = by;

}

public int getResult() {

return result;

}

public void setResult(int result) {

this.result = result;

}

}

public class CalcActionImpl implements CalcAction {

private Dto dto;

private Calculator calc;

public CalcActionImpl() {

}

public void setDto(Dto dto) {

this.dto = dto;

}

public void setCalculator(Calculator calc) {

this.calc = calc;

}

public String execute() {

dto.setResult(calc.multiply(dto.getSource(), dto.getBy()));

return null;

}

}

<components>

<component name=“dto" class="Dto" instance="request"/>

<component name=“calcAction" class=“CalcActionImpl" instance="request"/>

<component class=“CalcMachine"/>

</components>

Copyright© 2005, The Seasar Project and others. All rights reserved.
20

Translated by: H.Ozawa

S2Axis

■Register web service as a POJO on S2

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE components PUBLIC "-//SEASAR2.1//DTD S2Container//EN"

"http://www.seasar.org/dtd/components21.dtd">

<components>

<component name="calc" class="CalcMachine">

<meta name="s2-axis:service">

<component class="org.seasar.remoting.axis.ServiceDef">

<property name="serviceType">

@Calculator@class

</property>

</component>

</meta>

</component>

</components>

Copyright© 2005, The Seasar Project and others. All rights reserved.
21

Translated by: H.Ozawa

S2Axis

■Invoked from C#

private void button1_Click(object sender, EventArgs e)

{

// get Web service

CalculatorService calc = new CalculatorService();

// invoke a method

int ret = calc.multiply(Convert.ToInt32(textBox1.Text)

,Convert.ToInt32(textBox2.Text)

);

}

Copyright© 2005, The Seasar Project and others. All rights reserved.
22

Translated by: H.Ozawa

S2Dao

■RDBMS tables are as follows:

CREATE TABLE PERSONS

(PersonNo INTEGER, PersonName VARCHAR(100));

■Define a class to hold records

public class Person implements Serializable {

// associate with a table in RDBMS

public static final String TABLE = "PERSONS";

// Define fields to hold each column

private int personNo;

private String personName;

:

// setter/getter and so on…

}

to next page

PERSONS

table

Pers onPers onPers onPers on

- personNo: int
- personName: int

+ getPersonNo() : int
+ setPersonNo(int) : void
+ getPersonName() : String
+ setPersonName(String) : void

Copyright© 2005, The Seasar Project and others. All rights reserved.
23

Translated by: H.Ozawa

S2Dao

■Create DAO（Data Access Object）

public interface PersonDao {

// associate with a class to hold records

public Class BEAN = Person.class;

// following method generates SQL statements

public List getAllPersons();

public String getPersonName_ARGS = "personNo";

public String getPersonName(Integer personNo);

// following method executes an user defined SQL statement

public int getCount();

}

■File containing user defined SQL statement (PersonDao_getCount.sql file)

SELECT count(*) FROM PERSONS

from previous page

PersonDao_getCount.sql

file

PERSONS

table

Pers onPers onPers onPers on

- personNo: int
- personName: int

+ getPersonNo() : int
+ setPersonNo(int) : void
+ getPersonName() : String
+ setPersonName(String) : void

PersonDao

+ get AllPersons() : List
+ get PersonName(int) : St ring
+ get Count () : void

Generated SQL

Copyright© 2005, The Seasar Project and others. All rights reserved.
24

Translated by: H.Ozawa

S2Dao

■Define components in a dicon file

<?xml version="1.0" encoding=“UTF-8"?>

<!DOCTYPE components PUBLIC "-//SEASAR//DTD
S2Container//EN"

"http://www.seasar.org/dtd/components.dtd">

<components>

<include path="dao.dicon"/>

<component class="PersonDao">

<aspect>dao.interceptor</aspect>

</component>
</components>

Copyright© 2005, The Seasar Project and others. All rights reserved.
25

Translated by: H.Ozawa

S2Dao

■Call DAO from some other class

public class PersonLogicImpl implements PersonLogic {

private PersonDao personDao;

public void setPersonDao(PersonDao personDao) {

this.personDao = personDao;

}

public void execute() {

List persons = personDao.getAllPersons();

String personName = personDao.getPersonName(123);

int cnt = personDao.getCount();

}

}

When this class is initiated, DAO will

be injected by S2

Copyright© 2005, The Seasar Project and others. All rights reserved.
26

Translated by: H.Ozawa

What is AOP?

• Aspect Oriented Programming

• Feature to add functionalities transparently after
application is coded
– Weaving AOP does not change the core process

– New functionalities are added using AOP

• Horizontally between components, Vertically
between processes

• Crosscutting Concern：
– Should be attractive to system managers

– Logging, transaction, authentication, exception

• Function common to application logics in
components

• Do not overuse!

Copyright© 2005, The Seasar Project and others. All rights reserved.
27

Translated by: H.Ozawa

Example of Aspect XML

Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<components>

<component name="paintedCar" class="HandlingCar">
<aspect <aspect <aspect <aspect pointcutpointcutpointcutpointcut="run">="run">="run">="run">

<component class="ABS"/><component class="ABS"/><component class="ABS"/><component class="ABS"/>
</aspect></aspect></aspect></aspect>

</component>
</components>

pointcut attribute specifies method to Aspect

package tutorial.org.seasar.console;

public class HandlingCar implements Car {

public void run() {

System.out.println("Turn right!");

}

}

Copyright© 2005, The Seasar Project and others. All rights reserved.
28

Translated by: H.Ozawa

• MethodInterceptor divides into 2 parts during
execution

– Before and after MethodInvocation#proceed() invocation

– Before invocation is “Before”

– After invocation is “After”

public class ABS implements MethodInterceptor {

public Object invoke(MethodInvocation invocation) throws Throwable {

System.out.println("Ooops, danger! ");

Object ret = invocation.proceed();

System.out.println("kikikiki...");

return ret;

}

}

System.out.println("Ooops, danger! ");

System.out.println("kikikiki...");

Before

After

Ooops, danger!
Turn right!

kikikiki...

ResultResult

MethodInterceptor

Copyright© 2005, The Seasar Project and others. All rights reserved.
29

Translated by: H.Ozawa

Transaction Processing (without AOP)

• Application Logic

– Start a transaction if not already started

– Application program codes

– Commit transaction if there is no error

– Rollback transaction if there is an error

Copyright© 2005, The Seasar Project and others. All rights reserved.
30

Translated by: H.Ozawa

Transaction Processing (with AOP)

• Application Logic
– What the application is suppose to do

• Crosscutting concern

– Start a transaction if it is not already started
– Call on the application logic

– Commit transaction if there is no error

– Rollback transaction if there is an error

• Weave crosscutting concern into application logic by
associating them in a configuration file

<component class=“application logic class">

<aspect>

<component class=“crosscutting concern class"/>

<aspect>

</component>

Copyright© 2005, The Seasar Project and others. All rights reserved.
31

Translated by: H.Ozawa

S2Tｘ

• J2EE Transaction
– Implements JTA

– Seasar2 Extension package

• Transparent Service
– Only configuration is necessary. There is no need to write

code associate Tx

<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF<?xml version="1.0" encoding="UTF----8"?>8"?>8"?>8"?>
<components>

<include path="j2ee.dicon">

<component class=“PersonLogicImplPersonLogicImplPersonLogicImplPersonLogicImpl">

<aspect><aspect><aspect><aspect>j2ee.requiredTxj2ee.requiredTxj2ee.requiredTxj2ee.requiredTx</aspect></aspect></aspect></aspect>
</component>

</components> Only have to specify Tx Interceptor in aspect
tag

Copyright© 2005, The Seasar Project and others. All rights reserved.
32

Translated by: H.Ozawa

Create Configuration Files Easily!

• Writing XML is difficult

• So, want a tool to write it

• Want it as an Eclipse plugin!

=> Kijimuna

Copyright© 2005, The Seasar Project and others. All rights reserved.
33

Translated by: H.Ozawa

Current S2 Family

• Core Products

– S2Container （DI container）

– S2AOP （conform with AOP alliance）

– S2Tx（automatic transaction control ）

– S2DBCP（connection pooling ）

– S2JDBC （similar to Jakarta DbUtils）

– S2Unit （similar to test first tool）

• Peripheral Products

– S2JSF

– S2Dao

– S2Axis

– S2Remoting

– S2GroovyBuilder（write configuration file in Groovy）

– S2OpenAMF（Flash Remoting）

– S2Hibernate

– S2Struts

– S2Tapestry

– Maya

– etc…(sandbox projects)

• Eclipse Plugins

– Kijimuna

– S2JSF plugin

Copyright© 2005, The Seasar Project and others. All rights reserved.
34

Translated by: H.Ozawa

Future of Seasar

• What would be the relationship with the

next generation J2EE – especially EJB3?

Seasar Project will support EJB3.0

Please Look Forward!

Copyright© 2005, The Seasar Project and others. All rights reserved.
35

Translated by: H.Ozawa

Thank you

